dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:05:55Z |
|
dc.date.available |
2014-03-01T01:05:55Z |
|
dc.date.issued |
1981 |
en |
dc.identifier.issn |
0020-1154 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9077 |
|
dc.subject |
Ordinary Differential Equation |
en |
dc.subject |
First Order |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
BARS |
en |
dc.title |
Large elastic deformations in thin rods |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00535961 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00535961 |
en |
heal.language |
English |
en |
heal.publicationDate |
1981 |
en |
heal.abstract |
In this paper an appropriate analytical treatment for the determination, through exact formulae, of large elastic deformations in thin skew-curved rods is presented. This problem is associated with a system of fifteen nonlinear, ordinary, differential equations of the first order; the unknowns of the system are the final curvature and torsion functions, as well as the generalized internal forces and displacements of the rod. Subsequently, the problem of a thin cantilever circular rod subjected to terminal co-planar forces is examined and closed formulae determining its generalized displacements are obtained. Finally, the effectiveness and the potentialities of the method are demonstrated by several numerical applications. © 1981 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Ingenieur-Archiv |
en |
dc.identifier.doi |
10.1007/BF00535961 |
en |
dc.identifier.isi |
ISI:A1981MP16800012 |
en |
dc.identifier.volume |
51 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
139 |
en |
dc.identifier.epage |
149 |
en |