dc.contributor.author |
Panayotounakos, DE |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:05:57Z |
|
dc.date.available |
2014-03-01T01:05:57Z |
|
dc.date.issued |
1981 |
en |
dc.identifier.issn |
0374-3535 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9082 |
|
dc.subject |
Elliptic Integral |
en |
dc.subject |
linear functionals |
en |
dc.subject |
Nonlinear Differential Equation |
en |
dc.subject |
Nonlinear Elasticity |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
BEAMS AND GIRDERS |
en |
dc.title |
Nonlinear elastic analysis of planar curved beams loaded by co-planar concentrated forces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00058084 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00058084 |
en |
heal.language |
English |
en |
heal.publicationDate |
1981 |
en |
heal.abstract |
In this paper an analytical procedure for the nonlinear elastic analysis of a cantilever planar curved beam, subjected to a concentrated co-planar force at its free end, is presented. According to this method the nonlinear differential equations describing the equilibrium of the deformed beam are decoupled and a solution in the form of elliptic integrals is obtained, in the case when the curvature of the initial beam is a linear function of the are S. © 1981 Sijthoff & Noordhoff International Publishers. |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
Journal of Elasticity |
en |
dc.identifier.doi |
10.1007/BF00058084 |
en |
dc.identifier.isi |
ISI:A1981MQ87700007 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
429 |
en |
dc.identifier.epage |
437 |
en |