dc.contributor.author |
Kokolakis, GE |
en |
dc.date.accessioned |
2014-03-01T01:05:57Z |
|
dc.date.available |
2014-03-01T01:05:57Z |
|
dc.date.issued |
1981 |
en |
dc.identifier.issn |
0006-3444 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9086 |
|
dc.subject.classification |
Biology |
en |
dc.subject.classification |
Mathematical & Computational Biology |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.title |
On the expected probability of correct classification |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1093/biomet/68.2.477 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1093/biomet/68.2.477 |
en |
heal.language |
English |
en |
heal.publicationDate |
1981 |
en |
heal.abstract |
SUMMARY: The Bayesian approach is applied to examine how the number of features used in a classification problem affects the performance. Exact and asymptotic results are derived for two particular classification problems, demonstrating the positive effect of increasing the number of features. © 1981 Biometrika Trust. |
en |
heal.publisher |
BIOMETRIKA TRUST |
en |
heal.journalName |
Biometrika |
en |
dc.identifier.doi |
10.1093/biomet/68.2.477 |
en |
dc.identifier.isi |
ISI:A1981LZ46500018 |
en |
dc.identifier.volume |
68 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
477 |
en |
dc.identifier.epage |
483 |
en |