dc.contributor.author |
Theocaris, PS |
en |
dc.contributor.author |
Tsamasphyros, GJ |
en |
dc.contributor.author |
Mikroudis, G |
en |
dc.date.accessioned |
2014-03-01T01:06:01Z |
|
dc.date.available |
2014-03-01T01:06:01Z |
|
dc.date.issued |
1982 |
en |
dc.identifier.issn |
0001-5970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9118 |
|
dc.subject |
Contact Problem |
en |
dc.subject |
Integral Equation |
en |
dc.subject |
Numerical Solution |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
PHOTOELASTICITY |
en |
dc.subject.other |
STRUCTURAL DESIGN - Structural Analysis |
en |
dc.subject.other |
STRESSES |
en |
dc.title |
A combined integral-equation and photoelastic method for solving contact problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01178041 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01178041 |
en |
heal.language |
English |
en |
heal.publicationDate |
1982 |
en |
heal.abstract |
The relation for the difference of principal stresses expressed in terms of Muskhelishvili's complex potential was transformed to an integral equation for the case of a half-plane in contact. Two methods for the numerical solution of the integral equation were developed and a study for the appropriate selection of the collocation points was made. The existence of a solution of the equation and the possibility of applying an iterative process was shown. As an example, the method was succesfully applied for solving the problem of a half-plane loaded by either a uniform, or a parabolic, distribution of forces. © 1982 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/BF01178041 |
en |
dc.identifier.isi |
ISI:A1982PW29900007 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
215 |
en |
dc.identifier.epage |
231 |
en |