dc.contributor.author |
Tsamasphyros, G |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:06:03Z |
|
dc.date.available |
2014-03-01T01:06:03Z |
|
dc.date.issued |
1982 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9127 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0020159585&partnerID=40&md5=9480e57d0ca9e042fbfc16cd4c7b4fad |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
ELASTICITY |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - INTEGRAL EQUATIONS |
en |
dc.title |
A recurrence formula for the direct solution of singular integral equations |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1982 |
en |
heal.abstract |
An iterative method for the solution of singular integral equations is given in this paper by developing a recurrence formula. Discretizing the above formula, by using appropriate quadrature rules, the solution of the singular integral equation is given in an extremely simple form. The number of numerical operations required for such a solution is considerably reduced, when compared to the number of operations required for a classical type of solution. Illustrative examples are given, indicating the efficiency of the method. It is shown that the number of operations in this procedure is only half the number of the operations for a typical numerical method. The convergence of the method is studied in the space of Hölder continuous functions. In the particular case of plane elasticity more efficient bounds are given. In the same case it is proved that the procedure is equivalent to the Schwarz's alternating method and convergence is assured [18]. © 1982. |
en |
heal.publisher |
ELSEVIER SCIENCE SA LAUSANNE |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.isi |
ISI:A1982PF14700006 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
79 |
en |
dc.identifier.epage |
89 |
en |