HEAL DSpace

A recurrence formula for the direct solution of singular integral equations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsamasphyros, G en
dc.contributor.author Theocaris, PS en
dc.date.accessioned 2014-03-01T01:06:03Z
dc.date.available 2014-03-01T01:06:03Z
dc.date.issued 1982 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9127
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0020159585&partnerID=40&md5=9480e57d0ca9e042fbfc16cd4c7b4fad en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other ELASTICITY en
dc.subject.other MATHEMATICAL TECHNIQUES - INTEGRAL EQUATIONS en
dc.title A recurrence formula for the direct solution of singular integral equations en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1982 en
heal.abstract An iterative method for the solution of singular integral equations is given in this paper by developing a recurrence formula. Discretizing the above formula, by using appropriate quadrature rules, the solution of the singular integral equation is given in an extremely simple form. The number of numerical operations required for such a solution is considerably reduced, when compared to the number of operations required for a classical type of solution. Illustrative examples are given, indicating the efficiency of the method. It is shown that the number of operations in this procedure is only half the number of the operations for a typical numerical method. The convergence of the method is studied in the space of Hölder continuous functions. In the particular case of plane elasticity more efficient bounds are given. In the same case it is proved that the procedure is equivalent to the Schwarz's alternating method and convergence is assured [18]. © 1982. en
heal.publisher ELSEVIER SCIENCE SA LAUSANNE en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.isi ISI:A1982PF14700006 en
dc.identifier.volume 31 en
dc.identifier.issue 1 en
dc.identifier.spage 79 en
dc.identifier.epage 89 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής