dc.contributor.author |
Theocaris, PS |
en |
dc.contributor.author |
Panayotounakos, DE |
en |
dc.date.accessioned |
2014-03-01T01:06:04Z |
|
dc.date.available |
2014-03-01T01:06:04Z |
|
dc.date.issued |
1982 |
en |
dc.identifier.issn |
0020-7462 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9141 |
|
dc.subject |
Exact Solution |
en |
dc.subject |
Linear Differential Equation |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
BEAMS AND GIRDERS - Buckling |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Differential Equations |
en |
dc.subject.other |
RODS |
en |
dc.subject.other |
ELASTICITY |
en |
dc.title |
Exact solution of the non-linear differential equation concerning the elastic line of a straight rod due to terminal loading |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0020-7462(82)90009-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0020-7462(82)90009-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
1982 |
en |
heal.abstract |
In this paper a closed-form solution of the differential equation - λ1y″ (1+y′2)3 2- λ2y′y″ (1+y′2)3 2-= α(y + bx + c) related to the elastic line of a straight thin rod due to a terminal co-planar loading, is obtained. Based on this solution, the problem of eccentric buckling of the same rod, taking into account the influence of transverse shear deformations, is examined. © 1982. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Non-Linear Mechanics |
en |
dc.identifier.doi |
10.1016/0020-7462(82)90009-9 |
en |
dc.identifier.isi |
ISI:A1982PZ07300009 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
5-6 |
en |
dc.identifier.spage |
395 |
en |
dc.identifier.epage |
402 |
en |