dc.contributor.author |
Uzunoglu, NK |
en |
dc.contributor.author |
Kanellopoulos, JD |
en |
dc.date.accessioned |
2014-03-01T01:06:06Z |
|
dc.date.available |
2014-03-01T01:06:06Z |
|
dc.date.issued |
1982 |
en |
dc.identifier.issn |
0305-4470 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9157 |
|
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.title |
Scattering from underground tunnels |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0305-4470/15/2/018 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0305-4470/15/2/018 |
en |
heal.identifier.secondary |
018 |
en |
heal.language |
English |
en |
heal.publicationDate |
1982 |
en |
heal.abstract |
The scattering of electromagnetic waves from underground tunnels is investigated analytically. A Green function approach is employed to formulate the problem for horizontally polarised incident waves. This approach results in an integral equation for the unknown interior field E(r) for the buried scatterer region. Expansion of the unknown E(r) field in terms of cylindrical wavefunctions is conjunction with the basic integral equation leads to an infinite set of linear equations. An analytical procedure is developed to decouple this system of equations when the excessive phaseshift inside the scattering region is small. This determines the inner field E(r) of the scatterer. In order to compute the scattered field for the far-field region a steepest descent integration technique is employed. Numerical results are obtained for several cases and are presented. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Journal of Physics A: General Physics |
en |
dc.identifier.doi |
10.1088/0305-4470/15/2/018 |
en |
dc.identifier.isi |
ISI:A1982NA40200018 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
459 |
en |
dc.identifier.epage |
471 |
en |