dc.contributor.author |
Xerocostas, DA |
en |
dc.contributor.author |
Demertzes, C |
en |
dc.date.accessioned |
2014-03-01T01:06:06Z |
|
dc.date.available |
2014-03-01T01:06:06Z |
|
dc.date.issued |
1982 |
en |
dc.identifier.issn |
01716468 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9161 |
|
dc.subject |
Numerical Technique |
en |
dc.subject |
Probability Distribution |
en |
dc.subject |
Probability Generating Function |
en |
dc.subject |
Queueing Model |
en |
dc.subject |
Queueing System |
en |
dc.subject |
Steady State |
en |
dc.title |
Steady state solution of the Ek/D/r queueing model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01837024 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01837024 |
en |
heal.publicationDate |
1982 |
en |
heal.abstract |
In this paper we study the Ek/D/r queueing system. The steady state equations are derived and the queue lenth probability generating function is determined. The average number of customers in the system and other related quantities are determined in closed form in terms of the roots of an equation, which can be easily obtained by standard numerical techniques. Also a computational procedure for evaluating the steady state probability distribution of the number of customers in the system is developed. Numerical results of the average queueing times are given for k=2, r=1, 2, ..., 10 and the whole range of utilization factors. © 1982 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
OR Spektrum |
en |
dc.identifier.doi |
10.1007/BF01837024 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
47 |
en |
dc.identifier.epage |
51 |
en |