dc.contributor.author |
Theocaris, PS |
en |
dc.contributor.author |
Karayanopoulos, N |
en |
dc.contributor.author |
Tsamasphyros, G |
en |
dc.date.accessioned |
2014-03-01T01:06:08Z |
|
dc.date.available |
2014-03-01T01:06:08Z |
|
dc.date.issued |
1983 |
en |
dc.identifier.issn |
0045-7949 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9179 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0020587805&partnerID=40&md5=b212d02b46ab121da2e76a46923a6eef |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Numerical Methods |
en |
dc.subject.other |
STRUCTURAL ANALYSIS |
en |
dc.subject.other |
ELASTICITY |
en |
dc.title |
A numerical method for the solution of static and dynamic three-dimensional elasticity problems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1983 |
en |
heal.abstract |
Kupradze's functional equation, reduced to a regular Fredholm integral equation of the first kind, was solved by applying a new numerical method, based on numerical integration, whose collocation points are chosen in self-similar surfaces. An application of the method to a particular problem of elasticity demonstrated a sufficient accuracy and stability of the method. It was shown that the proposed method is faster, simpler and more easily programmable than the existing classical methods. Finally, suggestions were made for a better use of the method and for possible improvements. © 1983. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computers and Structures |
en |
dc.identifier.isi |
ISI:A1983QA72700010 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
777 |
en |
dc.identifier.epage |
784 |
en |