dc.contributor.author |
Tsamasphyros, G |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:06:11Z |
|
dc.date.available |
2014-03-01T01:06:11Z |
|
dc.date.issued |
1983 |
en |
dc.identifier.issn |
0010-485X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9215 |
|
dc.subject |
AMS Subject Classifications: Primary 65D30, 65D32, secondary 41A55 |
en |
dc.subject |
Cauchy-principal values |
en |
dc.subject |
convergence |
en |
dc.subject |
finite-part integrals |
en |
dc.subject |
Jacobi quadratures |
en |
dc.subject |
Lagrange polynomials |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES |
en |
dc.title |
On the convergence of some quadrature rules for Cauchy principal-value and finite-part integrals |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02259907 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02259907 |
en |
heal.language |
English |
en |
heal.publicationDate |
1983 |
en |
heal.abstract |
In this paper sufficient conditions are derived to ensure the convergence of the Elliott and Hunter types of quadrature rules for the evaluation of weighted Cauchy principal-value integrals of the form:[Figure not available: see fulltext.] The simultaneous convergence in the interval (-1, 1) of both quadratures was established for a class of Hölder-continuous functions f(f∈Hμ). Corrections of some previous statements on the subject of convergence of such quadratures are also included. Moreover, a simple derivation of the Hunter and Elliott types of quadrature rules for the evaluation of the derivative of the p-th-order of the abovestated integral was given and sufficient conditions for the convergence of the Hunter-type quadrature were obtained. Thus, the convergence of this integral was ensured for functions f such that f(p)∈Hμ. © 1983 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Computing |
en |
dc.identifier.doi |
10.1007/BF02259907 |
en |
dc.identifier.isi |
ISI:A1983RL81600002 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
105 |
en |
dc.identifier.epage |
114 |
en |