dc.contributor.author |
Theocaris, PS |
en |
dc.contributor.author |
Panayotounakos, DE |
en |
dc.date.accessioned |
2014-03-01T01:06:12Z |
|
dc.date.available |
2014-03-01T01:06:12Z |
|
dc.date.issued |
1983 |
en |
dc.identifier.issn |
0022-460X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9230 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0020794017&partnerID=40&md5=eb0d8dd379a1e031d895e0d3a39760bd |
en |
dc.subject.classification |
Acoustics |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Harmonic Analysis |
en |
dc.subject.other |
STRUCTURAL ANALYSIS - Applications |
en |
dc.subject.other |
BARS |
en |
dc.title |
The differential equations of uniform skew-curved bars in harmonic motion |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1983 |
en |
heal.abstract |
In this paper an analytical treatment for the formulation of the differential equations, governing the harmonic motion of a uniform skew-curved bar, is presented. Each differential element of the bar has six degrees of freedom, i.e., three translations and three rotations. The influences of transverse shear deformation and rotary inertia are included in the analysis. Furthermore, the problem of harmonic motion of planar curved bars is examined and special cases are investigated, the solutions obtained being in agreement with existing formulae. © 1983. |
en |
heal.publisher |
ACADEMIC PRESS LTD |
en |
heal.journalName |
Journal of Sound and Vibration |
en |
dc.identifier.isi |
ISI:A1983RB31800005 |
en |
dc.identifier.volume |
89 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
195 |
en |
dc.identifier.epage |
211 |
en |