HEAL DSpace

An expansion theorem for water-wave potentials

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Athanassoulis, GA en
dc.date.accessioned 2014-03-01T01:06:14Z
dc.date.available 2014-03-01T01:06:14Z
dc.date.issued 1984 en
dc.identifier.issn 0022-0833 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9254
dc.subject Boundary Condition en
dc.subject Cross Section en
dc.subject Free Surface en
dc.subject Incompressible Fluid en
dc.subject Laplace Equation en
dc.subject Numerical Solution en
dc.subject Satisfiability en
dc.subject Water Waves en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other MATHEMATICAL TECHNIQUES - Boundary Value Problems en
dc.subject.other WATER WAVES en
dc.subject.other FLOW OF WATER en
dc.title An expansion theorem for water-wave potentials en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF00039187 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF00039187 en
heal.language English en
heal.publicationDate 1984 en
heal.abstract Consider an infinitely long, horizontal cylinder of arbitrary cross section, floating on the free surface of an inviscid, incompressible fluid of infinite depth. The fluid motion is assumed two-dimensional, irrotational and of small amplitude, and it is described by a wave potential satisfying the Laplace equation, the usual linearized free-surface and body-boundary conditions, as well as proper conditions at infinity. A general multipole expansion for the wave potential is derived, converging throughout the fluid domain. Conditions are also stated under which the corresponding expansion for the fluid velocity converges up to and on the body boundary. In this case the multipole expansion may be used in the numerical solution or in the theoretical study of various water-wave problems. To obtain the expansion, a decomposition of the wave potential in a regular wave, a wave source, a wave dipole and a regular wave-free part is first invoked. Subsequently, using Texeira's series and the conformal mapping between the semicircular region |ζ|≥1, Im ζ≤0, and the fluid domain, it is shown that the regular part of the wave potential can be represented by a convergent series of wave-free multipoles, which are given explicitly in terms of the mapping function. © 1984 Martinus Nijhoff Publishers. en
heal.publisher Martinus Nijhoff, The Hague/Kluwer Academic Publishers en
heal.journalName Journal of Engineering Mathematics en
dc.identifier.doi 10.1007/BF00039187 en
dc.identifier.isi ISI:A1984TG67800002 en
dc.identifier.volume 18 en
dc.identifier.issue 3 en
dc.identifier.spage 181 en
dc.identifier.epage 194 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής