dc.contributor.author |
Theocaris, PS |
en |
dc.date.accessioned |
2014-03-01T01:06:16Z |
|
dc.date.available |
2014-03-01T01:06:16Z |
|
dc.date.issued |
1984 |
en |
dc.identifier.issn |
0020-7403 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9282 |
|
dc.subject |
Cantilever Beam |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
STRUCTURAL ANALYSIS - Mathematical Models |
en |
dc.subject.other |
BUTTERFLY CATASTROPHE |
en |
dc.subject.other |
CANTILEVER BEAMS |
en |
dc.subject.other |
BEAMS AND GIRDERS |
en |
dc.title |
Instability of cantilever beams with non-linear elements: Butterfly catastrophe |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0020-7403(84)90047-X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0020-7403(84)90047-X |
en |
heal.language |
English |
en |
heal.publicationDate |
1984 |
en |
heal.abstract |
The instability of an elastic cantilever beam combined with a non-linear element, which is subjected to axial and normal concentrated and distributed loads was studied. It was shown that the total potential energy u of the system was equivalent to a universal unfolding of a butterfly catastrophe and, therefore, its approximate locus of failure may be studied by means of the bifurcation set of this type of elementary catastrophe. The problem is a generalization of the case of cantilever beams connected with elastic elements, whose solution is in agreement with the general results. established in the paper. © 1984. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Mechanical Sciences |
en |
dc.identifier.doi |
10.1016/0020-7403(84)90047-X |
en |
dc.identifier.isi |
ISI:A1984TA56200004 |
en |
dc.identifier.volume |
26 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
265 |
en |
dc.identifier.epage |
275 |
en |