HEAL DSpace

On two geometric problems related to the travelling salesman problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadimitriou, CH en
dc.contributor.author Vazirani, UV en
dc.date.accessioned 2014-03-01T01:06:17Z
dc.date.available 2014-03-01T01:06:17Z
dc.date.issued 1984 en
dc.identifier.issn 0196-6774 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9293
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0037854822&partnerID=40&md5=2b9adbf7b7d0bc1017842a364d2d1131 en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Mathematics, Applied en
dc.title On two geometric problems related to the travelling salesman problem en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1984 en
heal.abstract The degree-K Minimum Spanning Tree (MST) problem asks for the minimum length spanning tree that has no vertex of degree greater than K. The Euclidean degree-K MST problem is known to be tractable for K ≥ 5; the degree-2 MST is simply the Euclidean path-TSP, which is NP-complete. It is proved that the Euclidean degree-3 MST problem is also NP-complete, thus leaving open only the case for K = 4. Among the most illustrious approximation algorithms is the heuristic for the Euclidean TSP due to Christofides. It is proved that implementing the ""shortcutting phase"" of Christofides' algorithm optimally is NP-hard (even so, Christofides' algorithm guarantees a tour which is no more than 50% longer than the optimal one). © 1984. en
heal.publisher ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS en
heal.journalName Journal of Algorithms en
dc.identifier.isi ISI:A1984SV82600006 en
dc.identifier.volume 5 en
dc.identifier.issue 2 en
dc.identifier.spage 231 en
dc.identifier.epage 246 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής