dc.contributor.author |
Papadimitriou, CH |
en |
dc.contributor.author |
Vazirani, UV |
en |
dc.date.accessioned |
2014-03-01T01:06:17Z |
|
dc.date.available |
2014-03-01T01:06:17Z |
|
dc.date.issued |
1984 |
en |
dc.identifier.issn |
0196-6774 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9293 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0037854822&partnerID=40&md5=2b9adbf7b7d0bc1017842a364d2d1131 |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.title |
On two geometric problems related to the travelling salesman problem |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1984 |
en |
heal.abstract |
The degree-K Minimum Spanning Tree (MST) problem asks for the minimum length spanning tree that has no vertex of degree greater than K. The Euclidean degree-K MST problem is known to be tractable for K ≥ 5; the degree-2 MST is simply the Euclidean path-TSP, which is NP-complete. It is proved that the Euclidean degree-3 MST problem is also NP-complete, thus leaving open only the case for K = 4. Among the most illustrious approximation algorithms is the heuristic for the Euclidean TSP due to Christofides. It is proved that implementing the ""shortcutting phase"" of Christofides' algorithm optimally is NP-hard (even so, Christofides' algorithm guarantees a tour which is no more than 50% longer than the optimal one). © 1984. |
en |
heal.publisher |
ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS |
en |
heal.journalName |
Journal of Algorithms |
en |
dc.identifier.isi |
ISI:A1984SV82600006 |
en |
dc.identifier.volume |
5 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
231 |
en |
dc.identifier.epage |
246 |
en |