dc.contributor.author |
Therapos, CP |
en |
dc.contributor.author |
Diamessis, JE |
en |
dc.date.accessioned |
2014-03-01T01:06:19Z |
|
dc.date.available |
2014-03-01T01:06:19Z |
|
dc.date.issued |
1984 |
en |
dc.identifier.issn |
0016-0032 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9311 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0021423305&partnerID=40&md5=16531cb59d21e3b8c1ebffa9379e06da |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
CONTROL SYSTEMS - Controllability |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Approximation Theory |
en |
dc.subject.other |
MATHEMATICAL PROGRAMMING, LINEAR |
en |
dc.title |
Sampling method for linear system reduction |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1984 |
en |
heal.abstract |
A new method for obtaining reduced order models for single-input-single-output, continuous-time systems is presented. The proposed algorithm matches the transfer functions of the original and the reduced system at 2M points where M is the order of the reduced model. The location of these points depends on a parameter which can be selected to control the accuracy of the approximation and stability. Numerical examples and comparisons with other methods of model reduction are given. © 1984. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Journal of the Franklin Institute |
en |
dc.identifier.isi |
ISI:A1984SV95800006 |
en |
dc.identifier.volume |
317 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
359 |
en |
dc.identifier.epage |
371 |
en |