dc.contributor.author |
Raptis, AD |
en |
dc.contributor.author |
Cash, JR |
en |
dc.date.accessioned |
2014-03-01T01:06:23Z |
|
dc.date.available |
2014-03-01T01:06:23Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.issn |
0010-4655 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9341 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0001752844&partnerID=40&md5=932a4fd644c94b73813515faa4c2a890 |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.title |
A variable step method for the numerical integration of the one-dimensional Schrödinger equation |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
Most numerical methods which have been proposed for the approximate integration of the one-dimensional Schrödinger equation use a fixed step length of integration. Such an approach can of course result in gross inefficiency since the small step length which must normally be used in the initial part of the range of integration to obtain the desired accuracy must then be used throughout the integration. In this paper we consider the method of embedding, which is widely used with explicit Runge-Kutta methods for the solution of first order initial value problems, for use with the special formulae used to integrate the Schrödinger equation. By adopting this technique we have available at each step an estimate of the local truncation error and this estimate can be used to automatically control the step length of integration. Also considered is the problem of estimating the global truncation error at the end of the range of integration. The power of the approaches considered is illustrated by means of some numerical examples. © 1985. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computer Physics Communications |
en |
dc.identifier.isi |
ISI:A1985AKK1600001 |
en |
dc.identifier.volume |
36 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
113 |
en |
dc.identifier.epage |
119 |
en |