dc.contributor.author |
Burton, FW |
en |
dc.contributor.author |
Kollias, VJ |
en |
dc.contributor.author |
Kollias J(Y) G, |
en |
dc.date.accessioned |
2014-03-01T01:06:25Z |
|
dc.date.available |
2014-03-01T01:06:25Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.issn |
0167-8655 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9363 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0021783883&partnerID=40&md5=f39cd3385f21b96c6e5aa81882a6e8f0 |
en |
dc.subject |
Binary images |
en |
dc.subject |
curve and region representation |
en |
dc.subject |
geographical information processing |
en |
dc.subject |
quadtree |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
Binary images |
en |
dc.subject.other |
curve and region representation |
en |
dc.subject.other |
geographical information processing. |
en |
dc.subject.other |
quadtree |
en |
dc.title |
Expected and worst-case storage requirements for quadtrees |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
The expected and worst-case numbers of nodes required for the quadtree representation of curves or regions are investigated. It is shown that in both cases the numbers are roughly proportional to the number of pixels in the curve or the boundary of the region, but that the worst case-storage requirements are at least 2 √2 times the size of the expected storage requirements, provided some reasonable assumptions are made. © 1985. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Pattern Recognition Letters |
en |
dc.identifier.isi |
ISI:A1985AFH4100008 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
131 |
en |
dc.identifier.epage |
135 |
en |