dc.contributor.author |
Kanarachos, A |
en |
dc.contributor.author |
Makris, P |
en |
dc.contributor.author |
Koch, M |
en |
dc.date.accessioned |
2014-03-01T01:06:26Z |
|
dc.date.available |
2014-03-01T01:06:26Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9376 |
|
dc.subject |
Structure Optimization |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.title |
Localization of multi-constrained optima and avoidance of local optima in structural optimization problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0045-7825(85)90029-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0045-7825(85)90029-5 |
en |
heal.language |
English |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
This paper describes two new methods of structural optimization. The first method is seen primarily in conjunction with optimality-criteria algorithms. It proposes a new procedure for the solution of multi-constrained optimization problems based on the calculation of partial optima. The partial optima refer to solutions of the optimization problem only for part of the constraints (in the simplest case only for a single constraint), and can be easily determined by already known procedures. The second method is a new mathematical-programming method designed to combine a high convergence speed together with a high reliability with respect to the avoidance of local minima. © 1985. |
en |
heal.publisher |
ELSEVIER SCIENCE SA LAUSANNE |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.doi |
10.1016/0045-7825(85)90029-5 |
en |
dc.identifier.isi |
ISI:A1985AUG6200006 |
en |
dc.identifier.volume |
51 |
en |
dc.identifier.issue |
1-3 |
en |
dc.identifier.spage |
79 |
en |
dc.identifier.epage |
106 |
en |