dc.contributor.author |
Chryssoverghi, I |
en |
dc.date.accessioned |
2014-03-01T01:06:26Z |
|
dc.date.available |
2014-03-01T01:06:26Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.issn |
0022-3239 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9383 |
|
dc.subject |
approximations |
en |
dc.subject |
descent methods |
en |
dc.subject |
nonconvexity |
en |
dc.subject |
Optimal control |
en |
dc.subject |
parabolic systems |
en |
dc.subject |
relaxed controls |
en |
dc.subject |
relaxed minimum principle |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
CONTROL SYSTEMS, DISTRIBUTED PARAMETER - Theory |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Numerical Methods |
en |
dc.subject.other |
CONVERGENCE |
en |
dc.subject.other |
DESCENT METHODS |
en |
dc.subject.other |
NONCONVEX OPTIMAL CONTROL PROBLEMS |
en |
dc.subject.other |
NUMERICAL APPROXIMATION |
en |
dc.subject.other |
PARABOLIC EQUATIONS |
en |
dc.subject.other |
CONTROL SYSTEMS, OPTIMAL |
en |
dc.title |
Numerical approximation of nonconvex optimal control problems defined by parabolic equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00940814 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00940814 |
en |
heal.language |
English |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
In this paper, we consider an optimal control problem for distributed systems governed by parabolic equations. The state equations are nonlinear in the control variable; the constraints and the cost functional are generally nonconvex. Relaxed controls are used to prove existence and derive necessary conditions for optimality. To compute optimal controls, a descent method is applied to the resulting relaxed problem. A numerical method is also given for approximating a special class of relaxed controls, notably those obtained by the descent method. Convergence proofs are given for both methods, and a numerical example is provided. © 1985 Plenum Publishing Corporation. |
en |
heal.publisher |
Kluwer Academic Publishers-Plenum Publishers |
en |
heal.journalName |
Journal of Optimization Theory and Applications |
en |
dc.identifier.doi |
10.1007/BF00940814 |
en |
dc.identifier.isi |
ISI:A1985ACY7400006 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
73 |
en |
dc.identifier.epage |
88 |
en |