HEAL DSpace

On the convergence of orthogonal eigenfunction series

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fikioris, JG en
dc.date.accessioned 2014-03-01T01:06:27Z
dc.date.available 2014-03-01T01:06:27Z
dc.date.issued 1985 en
dc.identifier.issn 0378-4754 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9385
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-46549090764&partnerID=40&md5=e71f407d54895d75cdb69e89db68b694 en
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0022321988&partnerID=40&md5=386f9da401d6780abe63d0632e864b7a en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.classification Mathematics, Applied en
dc.subject.other CONTROL SYSTEMS - Analysis en
dc.subject.other HIGH FREQUENCY SCATTERING en
dc.subject.other WATSON'S TRANSFORMATION en
dc.subject.other MATHEMATICAL TECHNIQUES en
dc.title On the convergence of orthogonal eigenfunction series en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1985 en
heal.abstract The method of Watson's Transformation, well known in high frequency scattering, is applied to a two-dimensional, orthogonal eigenfunction series of rectangular harmonic functions, which provides the solution to a typical boundary value problem of Laplace's equation. A new infinite, so-called residue, series is obtained exhibiting convergence properties stronger than, in certain respects, and complementary to the original eigenfunction series. Convergence of the two series and of their derivatives is further compared and tested near points of discontinuity. ""Extraction"" of the discontinuous term out of the original series and reexpansion of the solution provides a third eigenfunction series with uniform convergence in the whole region and good convergence near the singularities of the solution. Eigenfunction series of other boundary value problems are, also, discussed and similarities with the evaluation of complicated Fourier or Sommerfeld integrals via contour integration are pointed out. © 1985. en
heal.publisher North-Holland, Amsterdam, Neth en
heal.journalName Mathematics and Computers in Simulation en
dc.identifier.isi ISI:A1985ATV2500015 en
dc.identifier.volume 27 en
dc.identifier.issue 5-6 en
dc.identifier.spage 531 en
dc.identifier.epage 539 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής