dc.contributor.author |
Panayotounakos, DE |
en |
dc.date.accessioned |
2014-03-01T01:06:27Z |
|
dc.date.available |
2014-03-01T01:06:27Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.issn |
00256455 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9386 |
|
dc.title |
On the free motions of a uniform elastic helicoidal bar |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02337634 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02337634 |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
A thorough and rigorous analysis for the decoupling of a first-order partial differential system of four (3×1)-vectorial equations (with constant coefficients), governing the free three-dimensional dynamic equilibrium of an arc element of an elastic circular helicoidal bar, is presented. Through this decoupling procedure the equivalent to the system differential equation, with respect to one of the generalized displacements, results of the twelfth-order. Under the assumption that the general integral of this equation is given and for the most general case of response, the transcendental equation for the determination of the natural frequencies of the system is formulated. Finally, as an application on the method and under some restrictions the general integral of the differential equation of harmonic motions of an elastic helicoidal bar is determined in the form of elementary functions. © 1985 Pitagora Editrice Bologna. |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
Meccanica |
en |
dc.identifier.doi |
10.1007/BF02337634 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
151 |
en |
dc.identifier.epage |
159 |
en |