dc.contributor.author |
Afrati, F |
en |
dc.contributor.author |
Papadimitriou, CH |
en |
dc.contributor.author |
Papageorgiou, G |
en |
dc.date.accessioned |
2014-03-01T01:06:30Z |
|
dc.date.available |
2014-03-01T01:06:30Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.issn |
0019-9958 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9419 |
|
dc.subject |
Cubic Graph |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Graph Theory |
en |
dc.subject.other |
COMPLEXITY |
en |
dc.subject.other |
CUBICAL GRAPHS |
en |
dc.subject.other |
AUTOMATA THEORY |
en |
dc.title |
The complexity of cubical graphs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0019-9958(85)80012-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0019-9958(85)80012-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
A graph is cubical if it is a subgraph of a hypercube; the dimension of the smallest such hypercube is the dimension of the graph. We show several results concerning this class of graphs. We use a characterization of cubical graphs in terms of edge coloring to show that the dimension of biconnected cubical graphs is at most half the number of nodes. We also show that telling whether a graph is cubical is NP-complete. Finally, we propose a heuristic for minimizing the dimension of trees, which yields an embedding of the tree in a hypercube of dimension at most the square of the true dimension of the tree. © 1985 Academic Press, Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS |
en |
heal.journalName |
Information and Control |
en |
dc.identifier.doi |
10.1016/S0019-9958(85)80012-7 |
en |
dc.identifier.isi |
ISI:A1985AXT9600005 |
en |
dc.identifier.volume |
66 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
53 |
en |
dc.identifier.epage |
60 |
en |