dc.contributor.author |
Kadianakis, N |
en |
dc.date.accessioned |
2014-03-01T01:06:30Z |
|
dc.date.available |
2014-03-01T01:06:30Z |
|
dc.date.issued |
1985 |
en |
dc.identifier.issn |
0369-3546 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9421 |
|
dc.subject |
differential geometry and topology |
en |
dc.subject |
Field theory |
en |
dc.subject |
Geometry |
en |
dc.subject |
Other topics in relativity and gravitation |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.title |
The electromagnetic field in classical space-time |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02804859 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02804859 |
en |
heal.language |
English |
en |
heal.publicationDate |
1985 |
en |
heal.abstract |
We give a frame-independent representation of the electromagnetic field on classical, nonrelativistic, space-time in terms of an affine connection of it (or even a 2-form in some cases). Maxwell's equations are thus expressed as properties of the Riemann curvature tensor of this connection. Although this representation does not have the covariant character of the relativistic electromagnetism, it shows the may of associating dynamical systems with affine connections. In this context the equation of motion is associated with the geodesic equation of the connection. © 1985 Società Italiana di Fisica. |
en |
heal.publisher |
Società Italiana di Fisica |
en |
heal.journalName |
Il Nuovo Cimento A |
en |
dc.identifier.doi |
10.1007/BF02804859 |
en |
dc.identifier.isi |
ISI:A1985ARR3900006 |
en |
dc.identifier.volume |
89 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
204 |
en |
dc.identifier.epage |
215 |
en |