dc.contributor.author | Papantonis, D | en |
dc.contributor.author | Bergeles, G | en |
dc.date.accessioned | 2014-03-01T01:06:31Z | |
dc.date.available | 2014-03-01T01:06:31Z | |
dc.date.issued | 1986 | en |
dc.identifier.issn | 0001-5970 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/9439 | |
dc.subject | Coordinate System | en |
dc.subject | Differential Equation | en |
dc.subject | Numerical Solution | en |
dc.subject | Three Dimensional | en |
dc.subject | 3 dimensional | en |
dc.subject.classification | Mechanics | en |
dc.subject.other | FLOW OF FLUIDS - Cascades | en |
dc.subject.other | MATHEMATICAL TECHNIQUES - Differential Equations | en |
dc.subject.other | BLADE-TO-BLADE FLOW | en |
dc.subject.other | RELAXATION METHOD | en |
dc.subject.other | S1 STREAM SURFACE TRANSFORMATION | en |
dc.subject.other | TURBOMACHINERY | en |
dc.title | A numerical solution of the blade-to-blade flow in turbomachines by the application of a transformation on the S1 stream surface | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1007/BF01450390 | en |
heal.identifier.secondary | http://dx.doi.org/10.1007/BF01450390 | en |
heal.language | English | en |
heal.publicationDate | 1986 | en |
heal.abstract | The solution of the blade-to-blade (quasi-3-dimensional) steady, inviscid flow in turbomachines is considered as a quantitative prediction of the flow and as a good approximation of the real three-dimensional flow. The well known governing differential equation is of elliptic type and its numerical solution is a rather difficult problem (taking also into account the complex form of the S1 stream surface). By the procedure proposed, the S1 stream surface in the (m, θ) coordinate system is transformed into a rectangular (x,, y, space, by the application of the following transformation:x=m/L, (θ-θ1)/(θ2-θ1), whereθ1 and θ2 are the angular positions of the lines limiting the S1 surface, and L the length of the meridional projection of the blade. By the introduction of this transformation, extra terms are added to the differential equation, but now the definition of the grid is easier. From the transformed differential equation, a system of algebraic equations is obtained applying the finite volume method. The system of algebraic equations is solved by a relaxation method with periodic boundary conditions. The grid applied in the (x, y) coordinate system is not of uniform density in order to define better the geometry of the blades near the leading and trailing edges. Finally the results from the application of the procedure on a centrifugal, mixed flow pump are presented; i.e. relative velocity and static pressure distribution along the blade surfaces. © 1986 Springer-Verlag. | en |
heal.publisher | Springer-Verlag | en |
heal.journalName | Acta Mechanica | en |
dc.identifier.doi | 10.1007/BF01450390 | en |
dc.identifier.isi | ISI:A1986G133200002 | en |
dc.identifier.volume | 64 | en |
dc.identifier.issue | 3-4 | en |
dc.identifier.spage | 141 | en |
dc.identifier.epage | 153 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |