HEAL DSpace

A numerical solution of the blade-to-blade flow in turbomachines by the application of a transformation on the S1 stream surface

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papantonis, D en
dc.contributor.author Bergeles, G en
dc.date.accessioned 2014-03-01T01:06:31Z
dc.date.available 2014-03-01T01:06:31Z
dc.date.issued 1986 en
dc.identifier.issn 0001-5970 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9439
dc.subject Coordinate System en
dc.subject Differential Equation en
dc.subject Numerical Solution en
dc.subject Three Dimensional en
dc.subject 3 dimensional en
dc.subject.classification Mechanics en
dc.subject.other FLOW OF FLUIDS - Cascades en
dc.subject.other MATHEMATICAL TECHNIQUES - Differential Equations en
dc.subject.other BLADE-TO-BLADE FLOW en
dc.subject.other RELAXATION METHOD en
dc.subject.other S1 STREAM SURFACE TRANSFORMATION en
dc.subject.other TURBOMACHINERY en
dc.title A numerical solution of the blade-to-blade flow in turbomachines by the application of a transformation on the S1 stream surface en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF01450390 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF01450390 en
heal.language English en
heal.publicationDate 1986 en
heal.abstract The solution of the blade-to-blade (quasi-3-dimensional) steady, inviscid flow in turbomachines is considered as a quantitative prediction of the flow and as a good approximation of the real three-dimensional flow. The well known governing differential equation is of elliptic type and its numerical solution is a rather difficult problem (taking also into account the complex form of the S1 stream surface). By the procedure proposed, the S1 stream surface in the (m, θ) coordinate system is transformed into a rectangular (x,, y, space, by the application of the following transformation:x=m/L, (θ-θ1)/(θ2-θ1), whereθ1 and θ2 are the angular positions of the lines limiting the S1 surface, and L the length of the meridional projection of the blade. By the introduction of this transformation, extra terms are added to the differential equation, but now the definition of the grid is easier. From the transformed differential equation, a system of algebraic equations is obtained applying the finite volume method. The system of algebraic equations is solved by a relaxation method with periodic boundary conditions. The grid applied in the (x, y) coordinate system is not of uniform density in order to define better the geometry of the blades near the leading and trailing edges. Finally the results from the application of the procedure on a centrifugal, mixed flow pump are presented; i.e. relative velocity and static pressure distribution along the blade surfaces. © 1986 Springer-Verlag. en
heal.publisher Springer-Verlag en
heal.journalName Acta Mechanica en
dc.identifier.doi 10.1007/BF01450390 en
dc.identifier.isi ISI:A1986G133200002 en
dc.identifier.volume 64 en
dc.identifier.issue 3-4 en
dc.identifier.spage 141 en
dc.identifier.epage 153 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής