dc.contributor.author |
Papadrakakis, M |
en |
dc.date.accessioned |
2014-03-01T01:06:32Z |
|
dc.date.available |
2014-03-01T01:06:32Z |
|
dc.date.issued |
1986 |
en |
dc.identifier.issn |
0021-8936 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9447 |
|
dc.subject |
Iteration Method |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
MECHANICS - Applications |
en |
dc.subject.other |
PARTIAL ELIMINATION |
en |
dc.subject.other |
PARTIAL PRECONDITIONING |
en |
dc.subject.other |
PARTIAL PRECONDITIONING PROCESS |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES |
en |
dc.title |
ACCELERATING VECTOR ITERATION METHODS. |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1115/1.3171754 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1115/1.3171754 |
en |
heal.language |
English |
en |
heal.publicationDate |
1986 |
en |
heal.abstract |
This paper describes a technique for accelerating the convergence properties of iterative methods for the solution of large sparse symmetric linear systems that arise from the application of finite element method. The technique is called partial preconditioning process (PPR) and can be combined with pure vector iteration methods, such as the conjugate gradient, the dynamic relaxation, and the Chebyshev semi-iterative methods. The proposed triangular splitting preconditioner combines Evans' SSOR preconditioner with a drop-off tolerance criterion. The (PPR) is attractive in a FE framework because it is simple and can be implemented at the element level as opposed to incomplete Cholesky preconditioners, which require a sparse assembly. |
en |
heal.publisher |
ASME-AMER SOC MECHANICAL ENG |
en |
heal.journalName |
Journal of Applied Mechanics, Transactions ASME |
en |
dc.identifier.doi |
10.1115/1.3171754 |
en |
dc.identifier.isi |
ISI:A1986C850900009 |
en |
dc.identifier.volume |
53 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
291 |
en |
dc.identifier.epage |
297 |
en |