dc.contributor.author |
Tsamasphyros, G |
en |
dc.contributor.author |
Giannakopoulos, AE |
en |
dc.date.accessioned |
2014-03-01T01:06:32Z |
|
dc.date.available |
2014-03-01T01:06:32Z |
|
dc.date.issued |
1986 |
en |
dc.identifier.issn |
0013-7944 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9459 |
|
dc.subject |
Conformal Map |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
GRAPHIC METHODS - Optimization |
en |
dc.subject.other |
MATHEMATICAL TRANSFORMATIONS - Applications |
en |
dc.subject.other |
AUTOMATIC MESH GENERATION |
en |
dc.subject.other |
BOUNDARY VALUE PROBLEMS |
en |
dc.subject.other |
GEOMETRICAL DISCONTINUITIES |
en |
dc.subject.other |
NUMERICAL APPROXIMATE SOLUTION |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES |
en |
dc.title |
Automatic optimum mesh around singularities using conformal mapping |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0013-7944(86)90159-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0013-7944(86)90159-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
1986 |
en |
heal.abstract |
Geometrical discontinuities create singular fields. For the confrontation of such singularities, a gradual concentration of the finite element mesh is needed around the point of geometrical discontinuity. The automatic generation of an optimal mesh is obtained by using a Schwarz-Christoffel conformal transformation. Some characteristic examples are given in order to illustrate the method. The quality of the meshes produced is checked in a number of examples, and very satisfactory results are obtained. © 1986. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Engineering Fracture Mechanics |
en |
dc.identifier.doi |
10.1016/0013-7944(86)90159-1 |
en |
dc.identifier.isi |
ISI:A1986A186800004 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
507 |
en |
dc.identifier.epage |
520 |
en |