dc.contributor.author |
Stassinopoulos, GI |
en |
dc.date.accessioned |
2014-03-01T01:06:36Z |
|
dc.date.available |
2014-03-01T01:06:36Z |
|
dc.date.issued |
1986 |
en |
dc.identifier.issn |
0005-1098 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9493 |
|
dc.subject |
Computer networks |
en |
dc.subject |
convex programming |
en |
dc.subject |
duality thoery |
en |
dc.subject |
minimum time control |
en |
dc.subject |
traffic control |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
CONTROL SYSTEMS, OPTIMAL |
en |
dc.subject.other |
TELECOMMUNICATION SYSTEMS - Control |
en |
dc.subject.other |
TELEPHONE SYSTEMS - Traffic Analysis |
en |
dc.subject.other |
CONVEX PROGRAMMING |
en |
dc.subject.other |
FENCHEL DUALITY |
en |
dc.subject.other |
MINIMUM TIME CONTROL |
en |
dc.subject.other |
OPTIMAL ROUTING PROBLEM |
en |
dc.subject.other |
TRAFFIC CONTROL |
en |
dc.subject.other |
COMPUTER NETWORKS |
en |
dc.title |
Fenchel duality and smoothness of solution of the optimal routing problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0005-1098(86)90108-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0005-1098(86)90108-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
1986 |
en |
heal.abstract |
A linear state and control constrained problem arising in optimal routing in communication networks is investigated by Fenchel duality methods. The problem reduces to a dual program having a particularly simple solution. © 1986. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Automatica |
en |
dc.identifier.doi |
10.1016/0005-1098(86)90108-1 |
en |
dc.identifier.isi |
ISI:A1986A815600008 |
en |
dc.identifier.volume |
22 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
95 |
en |
dc.identifier.epage |
99 |
en |