dc.contributor.author |
Stassinakis, CA |
en |
dc.contributor.author |
Theocaris, PS |
en |
dc.contributor.author |
Kytopoulos, V |
en |
dc.date.accessioned |
2014-03-01T01:06:39Z |
|
dc.date.available |
2014-03-01T01:06:39Z |
|
dc.date.issued |
1986 |
en |
dc.identifier.issn |
0022-2461 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9549 |
|
dc.subject |
Crack Propagation |
en |
dc.subject |
Mechanical Property |
en |
dc.subject |
Scanning Electron Microscope |
en |
dc.subject |
Scanning Electron Microscopy |
en |
dc.subject |
Stress Intensity Factor |
en |
dc.subject |
Crack Tip Opening Angle |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.other |
FRACTURE MECHANICS |
en |
dc.subject.other |
MICROSCOPES, ELECTRON - Applications |
en |
dc.subject.other |
BIMATERIAL INTERFACES |
en |
dc.subject.other |
SCANNING ELECTRON MICROSCOPE |
en |
dc.subject.other |
SLOW-CRACK PROPAGATIONS |
en |
dc.subject.other |
EPOXY RESINS |
en |
dc.title |
Slow-crack propagations through bimaterial interfaces studied by scanning electron microscopy |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF00553246 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF00553246 |
en |
heal.language |
English |
en |
heal.publicationDate |
1986 |
en |
heal.abstract |
The scanning electron microscope (SEM) is used for the study of slow crack propagation through a bimaterial interface. This work is concerned with the variation of crack velocity, the variation of crack tip opening angle (CTOA) and the stress intensity factor (K) at the crack tip, and the investigation of crack arrest phenomena at the bimaterial interface. It was observed that the crack accelerates to a maximum velocity as the crack tip approaches the interface and then decreases rapidly to a minimum value at the interface. The interface acts as a ""decelerator"" to crack propagation. The position and the value of the maximum velocity depends on the mechanical properties of two phases and specimen configuration. The crack propagates at a constant CTOA until it arrests at the interface. During the crack-arrest time the CTOA increases rapidly to a limiting value. Then the crack passes across the interface and propagates in the next phase with almost the same CTOA as the initial crack in phase I. The stress intensity factor, K, increases to a maximum value near the bimaterial interface. © 1986 Chapman and Hall Ltd. |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
Journal of Materials Science |
en |
dc.identifier.doi |
10.1007/BF00553246 |
en |
dc.identifier.isi |
ISI:A1986A518800009 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
1155 |
en |
dc.identifier.epage |
1160 |
en |