Slow-crack propagations through bimaterial interfaces studied by scanning electron microscopy

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Stassinakis, CA en
dc.contributor.author Theocaris, PS en
dc.contributor.author Kytopoulos, V en
dc.date.accessioned 2014-03-01T01:06:39Z
dc.date.available 2014-03-01T01:06:39Z
dc.date.issued 1986 en
dc.identifier.issn 0022-2461 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9549
dc.subject Crack Propagation en
dc.subject Mechanical Property en
dc.subject Scanning Electron Microscope en
dc.subject Scanning Electron Microscopy en
dc.subject Stress Intensity Factor en
dc.subject Crack Tip Opening Angle en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.other FRACTURE MECHANICS en
dc.subject.other MICROSCOPES, ELECTRON - Applications en
dc.subject.other BIMATERIAL INTERFACES en
dc.subject.other SLOW-CRACK PROPAGATIONS en
dc.subject.other EPOXY RESINS en
dc.title Slow-crack propagations through bimaterial interfaces studied by scanning electron microscopy en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF00553246 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF00553246 en
heal.language English en
heal.publicationDate 1986 en
heal.abstract The scanning electron microscope (SEM) is used for the study of slow crack propagation through a bimaterial interface. This work is concerned with the variation of crack velocity, the variation of crack tip opening angle (CTOA) and the stress intensity factor (K) at the crack tip, and the investigation of crack arrest phenomena at the bimaterial interface. It was observed that the crack accelerates to a maximum velocity as the crack tip approaches the interface and then decreases rapidly to a minimum value at the interface. The interface acts as a ""decelerator"" to crack propagation. The position and the value of the maximum velocity depends on the mechanical properties of two phases and specimen configuration. The crack propagates at a constant CTOA until it arrests at the interface. During the crack-arrest time the CTOA increases rapidly to a limiting value. Then the crack passes across the interface and propagates in the next phase with almost the same CTOA as the initial crack in phase I. The stress intensity factor, K, increases to a maximum value near the bimaterial interface. © 1986 Chapman and Hall Ltd. en
heal.publisher Kluwer Academic Publishers en
heal.journalName Journal of Materials Science en
dc.identifier.doi 10.1007/BF00553246 en
dc.identifier.isi ISI:A1986A518800009 en
dc.identifier.volume 21 en
dc.identifier.issue 4 en
dc.identifier.spage 1155 en
dc.identifier.epage 1160 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record