HEAL DSpace

The normal shock waves of real gases and the generalized isentropic exponents

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kouremenos, DA en
dc.date.accessioned 2014-03-01T01:06:42Z
dc.date.available 2014-03-01T01:06:42Z
dc.date.issued 1986 en
dc.identifier.issn 0015-7899 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9572
dc.subject Equation of State en
dc.subject Gas Flow en
dc.subject Numerical Solution en
dc.subject Specific Heat en
dc.subject Thermodynamics en
dc.subject Shock Wave en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Engineering, Mechanical en
dc.subject.other FLOW OF FLUIDS - Supersonic en
dc.subject.other SPECIFIC HEAT - Gases en
dc.subject.other THERMODYNAMICS en
dc.subject.other ISENTROPIC EXPONENTS en
dc.subject.other NORMAL SHOCK en
dc.subject.other PERFECT GAS en
dc.subject.other REAL GASES en
dc.subject.other REDLICH-KWONG EQUATION en
dc.subject.other GASES en
dc.title The normal shock waves of real gases and the generalized isentropic exponents en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF02558430 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF02558430 en
heal.language English en
heal.publicationDate 1986 en
heal.abstract When a supersonic gas flow is choked or otherwise disturbed, a shock wave appears. When this shock wave is perpendicular to the direction of the one-dimensional flow, a normal shock wave transforms the flow to a subsonic one. The thermodynamic variables involved are five, i.e. the pressure, the specific volume, the temperature, the enthalpy and the velocity of the flow. To determine their values after the normal Shock, five relations are used namely the equation of state, the enthalpy equation, the laws of conservation of impulse and energy, and the continuity of mass. For the simple case of a perfect gas, these relations are explicit and allow a straightforward solution of the system of the five equations. In the case of a real gas flow the system is solved numerically. The present work considers two other possibilities, i.e. the use of perfect gas like equations describing the phenomenon or the use of the Redlich-Kwong equation of state. Perfect gas like equations may be used now, to describe the phenomenon, after it has been shown that there exist three isentropic exponents, instead of the one used until now, and after it has been observed that the mathematical form of the perfect gas equations fit the real gas isentropic expansion when suitable numerical values of the corresponding constants and exponents are used. The other possibility, the use of the Redlich-Kwong equation of state, allows the calculation of the state variables after the normal shock when only the two constants of this equation and the specific heat of the corresponding perfect gas state (pressure approaching zero) are available. Both methods presented here require the numerical solution of a onevariable equation. In the first method the variable is the Mach number while in the second the specific volume. © 1986 VDI-Verlag GmbH. en
heal.publisher Springer-Verlag en
heal.journalName Forschung im Ingenieurwesen en
dc.identifier.doi 10.1007/BF02558430 en
dc.identifier.isi ISI:A1986A559300005 en
dc.identifier.volume 52 en
dc.identifier.issue 1 en
dc.identifier.spage 23 en
dc.identifier.epage 31 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής