dc.contributor.author |
Kadianakis, N |
en |
dc.date.accessioned |
2014-03-01T01:06:43Z |
|
dc.date.available |
2014-03-01T01:06:43Z |
|
dc.date.issued |
1986 |
en |
dc.identifier.issn |
0369-3554 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9579 |
|
dc.subject |
02.40. |
en |
dc.subject |
03.40. |
en |
dc.subject |
Classical mechanics of continuous media : general mathematical aspects |
en |
dc.subject |
differential geometry and topology |
en |
dc.subject |
Geometry |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.title |
Vorticity-preserving motions in classical space-time |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02749004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02749004 |
en |
heal.language |
English |
en |
heal.publicationDate |
1986 |
en |
heal.abstract |
In this work we state and prove, in a frame-independent way, necessary and sufficient conditions for vorticity-preserving motions in classical space-time. Also we prove appropriate generalizations of classical Kelvin's theorems for isentropic and isochoric motions. In order to achieve a frame-independent formulation, we use the concept of classical nonrelativistic space-time, considered as a 4-dimensional differentiable manifold M endowed with an affine connection Γ. In this respect our results are generalizations of classical frame-dependent ones, based on a much simpler flat space-time M =T x E, where the « time »T and the « space »E are Euclidean spaces of dimension one and three, respectively. © 1986 Società Italiana di Fisica. |
en |
heal.publisher |
Società Italiana di Fisica |
en |
heal.journalName |
Il Nuovo Cimento B Series 11 |
en |
dc.identifier.doi |
10.1007/BF02749004 |
en |
dc.identifier.isi |
ISI:A1986E426000005 |
en |
dc.identifier.volume |
95 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
82 |
en |
dc.identifier.epage |
98 |
en |