HEAL DSpace

Numerical techniques for conformal mapping onto a rectangle

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papamichael, N en
dc.contributor.author Kokkinos, CA en
dc.contributor.author Warby, MK en
dc.date.accessioned 2014-03-01T01:06:55Z
dc.date.available 2014-03-01T01:06:55Z
dc.date.issued 1987 en
dc.identifier.issn 0377-0427 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9682
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0023454776&partnerID=40&md5=99989b1af970da8c5a12005b0bab2167 en
dc.subject Conformal mapping en
dc.subject conformal module en
dc.subject crowding en
dc.subject.classification Mathematics, Applied en
dc.subject.other JORDAN CURVE en
dc.subject.other NUMERICAL METHODS en
dc.subject.other RECTANGLES en
dc.subject.other SIMPLY-CONNECTED DOMAIN en
dc.subject.other MATHEMATICAL TECHNIQUES en
dc.title Numerical techniques for conformal mapping onto a rectangle en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1987 en
heal.abstract This paper is concerned with the problem of determining approximations to the function F which maps conformally a simply-connected domain Ω onto a rectangle R, so that four specified points on ∂Ω are mapped respectively onto the four vertices of R. In particular, we study the following two classes of methods for the mapping of domains of the form Ω{colon equals} {z = x + iy:00 < x < 1, τ1(x) < y < τ2(x)}. (i) Methods which approximate F: Ω → R by F ̃ = S {ring operator} F ̃, where F̃ is an approximation to the conformal map of Ω onto the unit disc, and S is a simple Schwarz-Christoffel transformation. (ii) Methods based on approximating the conformal map of a certain symmetric doubly-connected domain onto a circular annulus. © 1987. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Computational and Applied Mathematics en
dc.identifier.isi ISI:A1987L111800032 en
dc.identifier.volume 20 en
dc.identifier.issue C en
dc.identifier.spage 349 en
dc.identifier.epage 358 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής