dc.contributor.author |
Papamichael, N |
en |
dc.contributor.author |
Kokkinos, CA |
en |
dc.contributor.author |
Warby, MK |
en |
dc.date.accessioned |
2014-03-01T01:06:55Z |
|
dc.date.available |
2014-03-01T01:06:55Z |
|
dc.date.issued |
1987 |
en |
dc.identifier.issn |
0377-0427 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9682 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0023454776&partnerID=40&md5=99989b1af970da8c5a12005b0bab2167 |
en |
dc.subject |
Conformal mapping |
en |
dc.subject |
conformal module |
en |
dc.subject |
crowding |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
JORDAN CURVE |
en |
dc.subject.other |
NUMERICAL METHODS |
en |
dc.subject.other |
RECTANGLES |
en |
dc.subject.other |
SIMPLY-CONNECTED DOMAIN |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES |
en |
dc.title |
Numerical techniques for conformal mapping onto a rectangle |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1987 |
en |
heal.abstract |
This paper is concerned with the problem of determining approximations to the function F which maps conformally a simply-connected domain Ω onto a rectangle R, so that four specified points on ∂Ω are mapped respectively onto the four vertices of R. In particular, we study the following two classes of methods for the mapping of domains of the form Ω{colon equals} {z = x + iy:00 < x < 1, τ1(x) < y < τ2(x)}. (i) Methods which approximate F: Ω → R by F ̃ = S {ring operator} F ̃, where F̃ is an approximation to the conformal map of Ω onto the unit disc, and S is a simple Schwarz-Christoffel transformation. (ii) Methods based on approximating the conformal map of a certain symmetric doubly-connected domain onto a circular annulus. © 1987. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Journal of Computational and Applied Mathematics |
en |
dc.identifier.isi |
ISI:A1987L111800032 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
C |
en |
dc.identifier.spage |
349 |
en |
dc.identifier.epage |
358 |
en |