dc.contributor.author |
Ladopoulos, EG |
en |
dc.date.accessioned |
2014-03-01T01:06:56Z |
|
dc.date.available |
2014-03-01T01:06:56Z |
|
dc.date.issued |
1987 |
en |
dc.identifier.issn |
0013-7944 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9691 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0023599319&partnerID=40&md5=36aa82e701b376346f8e4ac49d854ffd |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
SOLIDS - Crack Propagation |
en |
dc.subject.other |
SURFACES - Stresses |
en |
dc.subject.other |
ANISOTROPIC BODIES |
en |
dc.subject.other |
BOUNDARY-VALUE PROBLEM |
en |
dc.subject.other |
STRESS VECTOR |
en |
dc.subject.other |
MATERIALS |
en |
dc.title |
On the solution of the two-dimensional problem of a plane crack of arbitrary shape in an anisotropic material |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1987 |
en |
heal.abstract |
In the present report we investigate the formulae of the stress field in the neighbourhood of a plane crack of arbitrary shape in an anisotropic material for the two-dimensional case. Moreover we consider the expression of the stress field in the neighbourhood of a plane crack in a transversely isotropic solid for the two-dimensional case. The construction of the solution for the anisotropic problem is presented as is the derivation of the expression for the surface tractions necessary to maintain the fundamental solution in a bounded region. © 1987. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Engineering Fracture Mechanics |
en |
dc.identifier.isi |
ISI:A1987K803400006 |
en |
dc.identifier.volume |
28 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
187 |
en |
dc.identifier.epage |
195 |
en |