dc.contributor.author |
Athanassoulis, GA |
en |
dc.date.accessioned |
2014-03-01T01:06:56Z |
|
dc.date.available |
2014-03-01T01:06:56Z |
|
dc.date.issued |
1987 |
en |
dc.identifier.issn |
0033-569X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9692 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0023138990&partnerID=40&md5=3d49d74b22228cf8374d258b3a1c36af |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Boundary Value Problems |
en |
dc.subject.other |
BODY BOUNDARY CONDITION |
en |
dc.subject.other |
EXPANSION THEORY |
en |
dc.subject.other |
TWO-DIMENSIONAL WATER-WAVE RADIATION |
en |
dc.subject.other |
WATER WAVES |
en |
dc.title |
ON THE SOLVABILITY OF A TWO-DIMENSIONAL WATER-WAVE RADIATION PROBLEM. |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1987 |
en |
heal.abstract |
The existence of a unique weak solution for the two-dimensional water-wave radiation problem arising when a floating rigid body oscillates on the free surface is established for all but a discrete set of oscillation frequencies. The body boundary condition is satisfied in the L**2-sense. The proof relies on an expansion theorem and on the property of the associated water-wave multipoles being a Riesz basis of L**2( minus pi , 0), a fact which is established in the present paper. Under stronger geometrical restrictions on the body boundary it is proved that the weak solution is actually a classical one; that is, the velocity field is continuous up to and including the body boundary. |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
Quarterly of Applied Mathematics |
en |
dc.identifier.isi |
ISI:A1987F864300001 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
601 |
en |
dc.identifier.epage |
620 |
en |