dc.contributor.author |
Kanarachos, A |
en |
dc.contributor.author |
Provatidis, Ch |
en |
dc.date.accessioned |
2014-03-01T01:06:58Z |
|
dc.date.available |
2014-03-01T01:06:58Z |
|
dc.date.issued |
1987 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9697 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0023385910&partnerID=40&md5=4ba9c7303d4ab3cd2937f39bc9d6179c |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Boundary Element Method |
en |
dc.subject.other |
BEAM DYNAMIC ANALYSIS |
en |
dc.subject.other |
MASS MATRICES |
en |
dc.subject.other |
MASS MATRIX FORMULATIONS |
en |
dc.subject.other |
WAVES |
en |
dc.title |
Performance of mass matrices for the BEM dynamic analysis of wave propagation problems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1987 |
en |
heal.abstract |
The performance of different mass matrix formulations for the dynamic analysis of wave propagation problems using the boundary element method (BEM) is investigated. It is shown that the BEM formulations have serious shortcomings if they are not Poisson-adjusted. The theoretical conclusions, which are expandable to other related problems, are sustained by 2D acoustic numerical results. © 1987. |
en |
heal.publisher |
ELSEVIER SCIENCE SA LAUSANNE |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.isi |
ISI:A1987J878300003 |
en |
dc.identifier.volume |
63 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
155 |
en |
dc.identifier.epage |
165 |
en |