HEAL DSpace

Strongly and uniformly convergent Green's function expansions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fikioris, JG en
dc.contributor.author Tsalamengas, JL en
dc.date.accessioned 2014-03-01T01:06:59Z
dc.date.available 2014-03-01T01:06:59Z
dc.date.issued 1987 en
dc.identifier.issn 0016-0032 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9723
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0023171326&partnerID=40&md5=576a847b938561ed87fcae3fffdd357b en
dc.subject.classification Automation & Control Systems en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other DIELECTRIC MATERIALS - Calculations en
dc.subject.other MATHEMATICAL TRANSFORMATIONS en
dc.subject.other CONVERGENCE en
dc.subject.other SOURCE POINT en
dc.subject.other WATSON TRANSFORMATION en
dc.subject.other MATHEMATICAL TECHNIQUES en
dc.title Strongly and uniformly convergent Green's function expansions en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1987 en
heal.abstract The convergence of Green's function expansions used in the exact analytical treatment of problems involving boundaries of different shapes is a property crucial in obtaining their solution. Existing expansions in most cases suffer from two serious setbacks: they do not converge uniformly in their region of validity, exhibiting a slow and conditional convergence near the source (singular) point and, even worse, they change expression when the field point moves past the source point. For such reasons they are unsuited for the solution of singular integral equations, in which values of the Green's function G at the source point do appear inside the integral. These inadequacies are met head-on by extracting the singular behavior in a closed-form term. Additional simple terms are also extracted to improve the convergence of the expansion of the remaining, non-singular part of G. The so-obtained new eigenfunction expansions for G converge uniformly over the whole region of their validity and very strongly (exponentially) near the source point. They are particularly suited for the solution of singular integral equations by the Carleman-Vekua method, otherwise known as the method of regularization by solving the dominant equation. These new expansions can be further subjected to a Watson transformation yielding a third expansion exhibiting strong convergence in regions where the convergence of the preceding series weakens, and vise versa. All these considerations are illustrated in this paper by means of a two-dimensional harmonic Green's function of a line source inside a rectangular shield, which is useful in a variety of shieldedline configurations. Extensions to different dielectric sublayers, to wave (Helmholtz) Green's functions, etc., are also discussed. © 1987. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Journal of the Franklin Institute en
dc.identifier.isi ISI:A1987J636400001 en
dc.identifier.volume 324 en
dc.identifier.issue 1 en
dc.identifier.spage 1 en
dc.identifier.epage 17 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής