dc.contributor.author |
Tsamasphyros, G |
en |
dc.contributor.author |
Androulidakis, P |
en |
dc.date.accessioned |
2014-03-01T01:07:01Z |
|
dc.date.available |
2014-03-01T01:07:01Z |
|
dc.date.issued |
1987 |
en |
dc.identifier.issn |
0029-5981 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9742 |
|
dc.subject |
Singular Integral Equation |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
MATHEMATICAL TRANSFORMATIONS |
en |
dc.subject.other |
TANH TRANSFORMATION |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES |
en |
dc.title |
TANH TRANSFORMATION FOR THE SOLUTION OF SINGULAR INTEGRAL EQUATIONS. |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/nme.1620240306 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/nme.1620240306 |
en |
heal.language |
English |
en |
heal.publicationDate |
1987 |
en |
heal.abstract |
Using a tanh transformation a quadrature formula for the evaluation of singular integrals is obtained. The formula has the same step length h as the formula for regular integrals derived by F. Stenger. These quadrature formulae are valid for end point singularities of any order and their error exhibits an exponential decay when the number of integrations tends to infinity. Using these formulae the solution of singular integral equations does not depend on the order of the end point singularities. Furthermore the collocation points are given by a very simple equation and, in the case of constant coefficients, by a closed-form formula. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical Methods in Engineering |
en |
dc.identifier.doi |
10.1002/nme.1620240306 |
en |
dc.identifier.isi |
ISI:A1987G430000005 |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
543 |
en |
dc.identifier.epage |
556 |
en |