dc.contributor.author |
Souflis, JL |
en |
dc.contributor.author |
Machias, AV |
en |
dc.contributor.author |
Papadias, BC |
en |
dc.date.accessioned |
2014-03-01T01:07:02Z |
|
dc.date.available |
2014-03-01T01:07:02Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0167-8655 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9758 |
|
dc.subject |
Bayes' decision rule |
en |
dc.subject |
electric power systems |
en |
dc.subject |
Lyapunov functions |
en |
dc.subject |
point estimates method |
en |
dc.subject |
statistical pattern recognition |
en |
dc.subject |
transient energy |
en |
dc.subject |
Transient stability |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.title |
A flexible statistical pattern recognition approach in transient stability studies |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0167-8655(88)90092-X |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0167-8655(88)90092-X |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
A statistical pattern recognition approach is presented for the on-line transient stability evaluation of electric power systems. The classifier that is used implements the Bayes' decision rule for classification. A flexible point estimates method is used to provide accurate values of the transient energy statistics, required in the classification procedures. © 1988. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Pattern Recognition Letters |
en |
dc.identifier.doi |
10.1016/0167-8655(88)90092-X |
en |
dc.identifier.isi |
ISI:A1988Q932800002 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
147 |
en |
dc.identifier.epage |
151 |
en |