dc.contributor.author |
Nerantzaki, MS |
en |
dc.contributor.author |
Katsikadelis, JT |
en |
dc.date.accessioned |
2014-03-01T01:07:02Z |
|
dc.date.available |
2014-03-01T01:07:02Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0001-5970 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9761 |
|
dc.subject |
biharmonic equation |
en |
dc.subject |
Curvature Tensor |
en |
dc.subject |
Gaussian Quadrature |
en |
dc.subject |
Green Function |
en |
dc.subject |
green's function method |
en |
dc.subject |
Integral Equation |
en |
dc.subject |
Integral Representation |
en |
dc.subject |
Nonlinear Integral Equation |
en |
dc.subject |
Integral Equation Method |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Elasticity--Mathematical Models |
en |
dc.subject.other |
Structural Analysis |
en |
dc.subject.other |
Curvature Tensors |
en |
dc.subject.other |
Green's Functions |
en |
dc.subject.other |
Stress Function |
en |
dc.subject.other |
Thin Elastic Plates |
en |
dc.subject.other |
Plates |
en |
dc.title |
A green's function method for large deflection analysis of plates |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01174636 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01174636 |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
An integral equation method is presented for large deflection analysis of thin elastic plates, whose behaviour is governed by the von Kármán equations. The method uses the Green function of the biharmonic equation to establish integral representations of the deflection and stress function for the linear part of the governing operator while the nonlinearities are treated as loading forces. Six nonlinear domain integral equations are formulated which are solved to yield the curvature tensors of the deflection and stress function surfaces and thereby the deflections and stress resultants. The nonlinear integral equations are solved numerically by developing an effective technique based on Gaussian quadrature over domains of arbitrary shape. For domains of simple geometry ready-to-use Green functions are employed whereas for regions of arbitrary shape the Green function is established numerically using BEM. The efficiency of the method is demonstrated and attested by analyzing a circular clamped plate with movable edge. © 1988 Springer-Verlag. |
en |
heal.publisher |
Springer-Verlag |
en |
heal.journalName |
Acta Mechanica |
en |
dc.identifier.doi |
10.1007/BF01174636 |
en |
dc.identifier.isi |
ISI:A1988R743600013 |
en |
dc.identifier.volume |
75 |
en |
dc.identifier.issue |
1-4 |
en |
dc.identifier.spage |
211 |
en |
dc.identifier.epage |
225 |
en |