HEAL DSpace

A green's function method for large deflection analysis of plates

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Nerantzaki, MS en
dc.contributor.author Katsikadelis, JT en
dc.date.accessioned 2014-03-01T01:07:02Z
dc.date.available 2014-03-01T01:07:02Z
dc.date.issued 1988 en
dc.identifier.issn 0001-5970 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9761
dc.subject biharmonic equation en
dc.subject Curvature Tensor en
dc.subject Gaussian Quadrature en
dc.subject Green Function en
dc.subject green's function method en
dc.subject Integral Equation en
dc.subject Integral Representation en
dc.subject Nonlinear Integral Equation en
dc.subject Integral Equation Method en
dc.subject.classification Mechanics en
dc.subject.other Elasticity--Mathematical Models en
dc.subject.other Structural Analysis en
dc.subject.other Curvature Tensors en
dc.subject.other Green's Functions en
dc.subject.other Stress Function en
dc.subject.other Thin Elastic Plates en
dc.subject.other Plates en
dc.title A green's function method for large deflection analysis of plates en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF01174636 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF01174636 en
heal.language English en
heal.publicationDate 1988 en
heal.abstract An integral equation method is presented for large deflection analysis of thin elastic plates, whose behaviour is governed by the von Kármán equations. The method uses the Green function of the biharmonic equation to establish integral representations of the deflection and stress function for the linear part of the governing operator while the nonlinearities are treated as loading forces. Six nonlinear domain integral equations are formulated which are solved to yield the curvature tensors of the deflection and stress function surfaces and thereby the deflections and stress resultants. The nonlinear integral equations are solved numerically by developing an effective technique based on Gaussian quadrature over domains of arbitrary shape. For domains of simple geometry ready-to-use Green functions are employed whereas for regions of arbitrary shape the Green function is established numerically using BEM. The efficiency of the method is demonstrated and attested by analyzing a circular clamped plate with movable edge. © 1988 Springer-Verlag. en
heal.publisher Springer-Verlag en
heal.journalName Acta Mechanica en
dc.identifier.doi 10.1007/BF01174636 en
dc.identifier.isi ISI:A1988R743600013 en
dc.identifier.volume 75 en
dc.identifier.issue 1-4 en
dc.identifier.spage 211 en
dc.identifier.epage 225 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record