dc.contributor.author |
Masavetas, KA |
en |
dc.contributor.author |
Roumpani-Kalantzopoulou, F |
en |
dc.date.accessioned |
2014-03-01T01:07:06Z |
|
dc.date.available |
2014-03-01T01:07:06Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0895-7177 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9790 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-45549111769&partnerID=40&md5=90613ca2dd748c40fb89d865a2e3eaa8 |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.title |
Categories and functors which characterize chemical reactions, their kinetics and mechanism |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
In this paper a description is undertaken of the chemical reactions, their kinetics and mechanism in the ""language"" of the theory of categories and functors. A theory is developed, by which a chemical reaction network is defined as a homomorphism B: M → S between finitely generated free Abelian groups. The free generators of M are a given set of elementary steps and the free generators of S are a given set of species. Each element of M is an integral linear combination of elementary steps and is called a mechanism. Examples are quoted of the application of the proposed theory to specific chemical systems and a theorem is proved for the number of possible mechanism for a given chemically reacting system. © 1988. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Mathematical and Computer Modelling |
en |
dc.identifier.isi |
ISI:A1988Q859100003 |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
731 |
en |
dc.identifier.epage |
738 |
en |