dc.contributor.author |
Giannakoglou, K |
en |
dc.contributor.author |
Chaviaropoulos, P |
en |
dc.contributor.author |
Papailiou, KD |
en |
dc.date.accessioned |
2014-03-01T01:07:06Z |
|
dc.date.available |
2014-03-01T01:07:06Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
00011452 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9795 |
|
dc.subject |
Decomposition Method |
en |
dc.subject |
Transonic Flow |
en |
dc.subject.other |
Mathematical Techniques--Vectors |
en |
dc.subject.other |
Thermodynamics |
en |
dc.subject.other |
Coordinate Transformations |
en |
dc.subject.other |
Partial Differential Equations |
en |
dc.subject.other |
Rotational Transonic Flows |
en |
dc.subject.other |
Flow of Fluids |
en |
dc.title |
Computation of rotational transonic flows using a decomposition method |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.2514/3.10025 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.2514/3.10025 |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
Any vector field may be decomposed, in a unique way, into an irrotational and a rotational part, if appropriate boundary conditions are imposed to the scalar and vector potentials introduced by the above decomposition. In the present work, the transformation is applied to the mass flux vector, in order to calculate two-dimensional, steady, rotational, transonic flows in arbitrarily shaped ducts and plane cascades. The whole procedure is discussed from an analytical and a numerical point of view, while finite difference-finite volume schemes are used to derive numerical results. |
en |
heal.journalName |
AIAA journal |
en |
dc.identifier.doi |
10.2514/3.10025 |
en |
dc.identifier.volume |
26 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
1175 |
en |
dc.identifier.epage |
1180 |
en |