Convected time derivatives in continuum mechanics

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Appleby, PG en
dc.contributor.author Kadianakis, N en
dc.date.accessioned 2014-03-01T01:07:06Z
dc.date.available 2014-03-01T01:07:06Z
dc.date.issued 1988 en
dc.identifier.issn 0369-3554 en
dc.identifier.uri http://hdl.handle.net/123456789/9797
dc.subject 02.20 en
dc.subject 02.40 en
dc.subject 03.40 en
dc.subject Classical mechanics of continuous media: general mathematical aspects en
dc.subject differential geometry and topology en
dc.subject Geometry en
dc.subject Group theory en
dc.subject.classification Physics, Multidisciplinary en
dc.title Convected time derivatives in continuum mechanics en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF02725618 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF02725618 en
heal.language English en
heal.publicationDate 1988 en
heal.abstract In this work we develop a frame-independent approach to the notion of convected derivation, and give a systematic classification of these derivatives in terms of an absolute vorticity and deformation rate in classical space-time. In the case of derivatives following a motion we distinguish between intrinsic and extrinsic convected derivatives. A link is established between the class of convected derivatives and the class of affine connections on classical space-time compatible with its metric structure. © 1988 Società Italiana di Fisica. en
heal.publisher Società Italiana di Fisica en
heal.journalName Il Nuovo Cimento B Series 11 en
dc.identifier.doi 10.1007/BF02725618 en
dc.identifier.isi ISI:A1988T793600004 en
dc.identifier.volume 102 en
dc.identifier.issue 6 en
dc.identifier.spage 593 en
dc.identifier.epage 608 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record