dc.contributor.author |
Appleby, PG |
en |
dc.contributor.author |
Kadianakis, N |
en |
dc.date.accessioned |
2014-03-01T01:07:06Z |
|
dc.date.available |
2014-03-01T01:07:06Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0369-3554 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9797 |
|
dc.subject |
02.20 |
en |
dc.subject |
02.40 |
en |
dc.subject |
03.40 |
en |
dc.subject |
Classical mechanics of continuous media: general mathematical aspects |
en |
dc.subject |
differential geometry and topology |
en |
dc.subject |
Geometry |
en |
dc.subject |
Group theory |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.title |
Convected time derivatives in continuum mechanics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02725618 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02725618 |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
In this work we develop a frame-independent approach to the notion of convected derivation, and give a systematic classification of these derivatives in terms of an absolute vorticity and deformation rate in classical space-time. In the case of derivatives following a motion we distinguish between intrinsic and extrinsic convected derivatives. A link is established between the class of convected derivatives and the class of affine connections on classical space-time compatible with its metric structure. © 1988 Società Italiana di Fisica. |
en |
heal.publisher |
Società Italiana di Fisica |
en |
heal.journalName |
Il Nuovo Cimento B Series 11 |
en |
dc.identifier.doi |
10.1007/BF02725618 |
en |
dc.identifier.isi |
ISI:A1988T793600004 |
en |
dc.identifier.volume |
102 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
593 |
en |
dc.identifier.epage |
608 |
en |