HEAL DSpace

EXACT SOLUTIONS FOR RECTANGULARLY SHIELDED LINES BY THE CARLEMAN-VEKUA METHOD.

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fikioris John, G en
dc.contributor.author Tsalamengas John, L en
dc.date.accessioned 2014-03-01T01:07:10Z
dc.date.available 2014-03-01T01:07:10Z
dc.date.issued 1988 en
dc.identifier.issn 0018-9480 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9822
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other MATHEMATICAL TECHNIQUES - Integral Equations en
dc.subject.other MICROSTRIP DEVICES - Electromagnetic Field Effects en
dc.subject.other CARLEMAN-VEKUA METHOD en
dc.subject.other FIELD PLOTS en
dc.subject.other RECTANGULARLY SHIELDED LINES TEM MODE en
dc.subject.other STRONGLY CONVERGENT SOLUTIONS en
dc.subject.other TWO-CONDUCTOR CONFIGURATION en
dc.subject.other TELECOMMUNICATION LINES, STRIP en
dc.title EXACT SOLUTIONS FOR RECTANGULARLY SHIELDED LINES BY THE CARLEMAN-VEKUA METHOD. en
heal.type journalArticle en
heal.identifier.primary 10.1109/22.3570 en
heal.identifier.secondary http://dx.doi.org/10.1109/22.3570 en
heal.language English en
heal.publicationDate 1988 en
heal.abstract Exact solutions for the field of the TEM mode of rectangularly shaped round (or strip) conductors are obtained by solving linear, singular integral equations. There are no limitations on the dimensions or the proximity of the conductors to the shield. Here only round conductors are considered. The kernel of the integral equation in such problems is the Green's function G of a line source inside the shield, possessing a logarithmic singularity near the source point. Elsewhere, the authors (1985, 1987) have developed expansions for G, in which the singular and certain other terms are extracted in closed form out of G and the remaining, nonsingular part is then reexpanded into series converging uniformly everywhere and very rapidly (exponentially) near the source point. These expansions for G are particularly suited for the exact solution of the singular integral equation of round shielded conductors by the Carleman-Vekua method, by solving the dominant equation. This leads to strongly convergent solutions for the field of the mode even when the conductors are large or very near the sheild. Questions of the integrability of nonuniformly convergent series do not arise. Characteristic values of the shielded lines, evaluated by summing a few terms, have been checked against existing approximate results, and field plots are shown in the case of close proximity. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Microwave Theory and Techniques en
dc.identifier.doi 10.1109/22.3570 en
dc.identifier.isi ISI:A1988M604000005 en
dc.identifier.volume 36 en
dc.identifier.issue 4 en
dc.identifier.spage 659 en
dc.identifier.epage 675 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής