dc.contributor.author |
Papadopoulos, GA |
en |
dc.contributor.author |
Georgiadis, HG |
en |
dc.contributor.author |
Poniridis, PI |
en |
dc.date.accessioned |
2014-03-01T01:07:10Z |
|
dc.date.available |
2014-03-01T01:07:10Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0013-7944 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9823 |
|
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Numerical Methods |
en |
dc.subject.other |
MATHEMATICAL TRANSFORMATIONS - Laplace Transforms |
en |
dc.subject.other |
STRESSES - Evaluation |
en |
dc.subject.other |
VISCOELASTICITY |
en |
dc.subject.other |
ANTI-PLANE IMPACT LOADING |
en |
dc.subject.other |
FINITE LENGTH CRACK |
en |
dc.subject.other |
VISCOELASTIC MATERIAL |
en |
dc.subject.other |
SOLIDS |
en |
dc.title |
Finite length crack in a viscoelastic strip under impact-II. Numerical results |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/0013-7944(88)90023-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/0013-7944(88)90023-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
Numerical results were extracted from the theoretical solution of the title problem for the case of the standard linear solid. The numerical procedure was accomplished by solving a second kind Fredholm integral equation and then by inverting the Laplace transformed intensity function. The latter was obtained by using the Papoulis-Miller-Guy method. The variation of the dynamic viscoelastic stress intensity factor vs time was evaluated under various material and geometrical parameters. © 1988. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Engineering Fracture Mechanics |
en |
dc.identifier.doi |
10.1016/0013-7944(88)90023-9 |
en |
dc.identifier.isi |
ISI:A1988M397200009 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
355 |
en |
dc.identifier.epage |
363 |
en |