dc.contributor.author |
Krikelis, NJ |
en |
dc.contributor.author |
Papadakis, F |
en |
dc.date.accessioned |
2014-03-01T01:07:11Z |
|
dc.date.available |
2014-03-01T01:07:11Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0020-7721 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9828 |
|
dc.subject |
Bond Graph |
en |
dc.subject |
Gas Turbine |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
COMPUTER SIMULATION |
en |
dc.subject.other |
MATHEMATICAL TECHNIQUES - Graph Theory |
en |
dc.subject.other |
DYNAMIC SIMULATION |
en |
dc.subject.other |
PSEUDO-BOND GRAPHS |
en |
dc.subject.other |
GAS TURBINES |
en |
dc.title |
GAS TURBINE MODELLING USING PSEUDO-BOND GRAPHS. |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00207728808967624 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00207728808967624 |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
A pseudo-bond graph-modeling approach for gas turbines is described. Generally in gas turbines the working medium is a compressible fluid, and there is mass flow as well as mechanical, thermal, and fluid power exchanges. The graph model and the ensuing mathematical model are derived by physical laws. The method presented here offers flexibility and adjustability in dynamic simulations. The technique is applied to the case of a particular gas turbine. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
International Journal of Systems Science |
en |
dc.identifier.doi |
10.1080/00207728808967624 |
en |
dc.identifier.isi |
ISI:A1988N339500002 |
en |
dc.identifier.volume |
19 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
537 |
en |
dc.identifier.epage |
550 |
en |