dc.contributor.author | Kravvaritis, D | en |
dc.contributor.author | Papageorgiou, NS | en |
dc.date.accessioned | 2014-03-01T01:07:12Z | |
dc.date.available | 2014-03-01T01:07:12Z | |
dc.date.issued | 1988 | en |
dc.identifier.issn | 00220396 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/9853 | |
dc.subject | Evolution Equation | en |
dc.subject | Hilbert Space | en |
dc.title | Multivalued perturbations of subdifferential type evolution equations in Hilbert spaces | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1016/0022-0396(88)90073-3 | en |
heal.identifier.secondary | http://dx.doi.org/10.1016/0022-0396(88)90073-3 | en |
heal.publicationDate | 1988 | en |
heal.abstract | In this paper we study the multivalued evolution equation - x ̇(t)ε{lunate}∂θ{symbol}(x(t)) + F(t, x(t)), x(0) = x0, where θ{symbol}: X → R ̄ is a proper, convex, lower semicontinuous (l.s.c.) function, F(·, ·) is a multivalued perturbation, and X is an infinite dimensional, separable Hilbert space. We have an existence result for F(·, ·) being nonconvex valued, and another for F(·, ·) being convex valued but not closed valued. When θ{symbol} = δK = indicator function of a compact, convex set K, we obtain some extensions of earlier results by Moreau and Henry. Then using the Kuratowski-Mosco convergence of sets and the τ-convergence of functions, we prove a well posedness result for the evolution inclusion we are studying. Also we consider a random version of it and prove the existence of a random solution. Finally we present applications to problems in partial differential equations. © 1988. | en |
heal.journalName | Journal of Differential Equations | en |
dc.identifier.doi | 10.1016/0022-0396(88)90073-3 | en |
dc.identifier.volume | 76 | en |
dc.identifier.issue | 2 | en |
dc.identifier.spage | 238 | en |
dc.identifier.epage | 255 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |