HEAL DSpace

Multivalued perturbations of subdifferential type evolution equations in Hilbert spaces

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kravvaritis, D en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:07:12Z
dc.date.available 2014-03-01T01:07:12Z
dc.date.issued 1988 en
dc.identifier.issn 00220396 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9853
dc.subject Evolution Equation en
dc.subject Hilbert Space en
dc.title Multivalued perturbations of subdifferential type evolution equations in Hilbert spaces en
heal.type journalArticle en
heal.identifier.primary 10.1016/0022-0396(88)90073-3 en
heal.identifier.secondary http://dx.doi.org/10.1016/0022-0396(88)90073-3 en
heal.publicationDate 1988 en
heal.abstract In this paper we study the multivalued evolution equation - x ̇(t)ε{lunate}∂θ{symbol}(x(t)) + F(t, x(t)), x(0) = x0, where θ{symbol}: X → R ̄ is a proper, convex, lower semicontinuous (l.s.c.) function, F(·, ·) is a multivalued perturbation, and X is an infinite dimensional, separable Hilbert space. We have an existence result for F(·, ·) being nonconvex valued, and another for F(·, ·) being convex valued but not closed valued. When θ{symbol} = δK = indicator function of a compact, convex set K, we obtain some extensions of earlier results by Moreau and Henry. Then using the Kuratowski-Mosco convergence of sets and the τ-convergence of functions, we prove a well posedness result for the evolution inclusion we are studying. Also we consider a random version of it and prove the existence of a random solution. Finally we present applications to problems in partial differential equations. © 1988. en
heal.journalName Journal of Differential Equations en
dc.identifier.doi 10.1016/0022-0396(88)90073-3 en
dc.identifier.volume 76 en
dc.identifier.issue 2 en
dc.identifier.spage 238 en
dc.identifier.epage 255 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής