HEAL DSpace

On a new integration rule with the Gegenbauer polynomials for singular integral equations used in the theory of elasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ladopoulos, EG en
dc.date.accessioned 2014-03-01T01:07:12Z
dc.date.available 2014-03-01T01:07:12Z
dc.date.issued 1988 en
dc.identifier.issn 0020-1154 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/9856
dc.subject Closed Form Solution en
dc.subject gegenbauer polynomials en
dc.subject Integral Equation en
dc.subject Large Classes en
dc.subject Numerical Solution en
dc.subject Singular Integral en
dc.subject Singular Integral Equation en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mechanics en
dc.subject.other FRACTURE MECHANICS - Computer Simulation en
dc.subject.other STRUCTURAL DESIGN - Computer Aided Design en
dc.subject.other COLLOCATION METHODS en
dc.subject.other INTEGRAL APPROXIMATION en
dc.subject.other INTEGRATION RULE en
dc.subject.other ELASTICITY en
dc.title On a new integration rule with the Gegenbauer polynomials for singular integral equations used in the theory of elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF00537198 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF00537198 en
heal.language English en
heal.publicationDate 1988 en
heal.abstract A new technique is proposed for the numerical solution of the Cauchy-type singular integral equations, by using the well known Gegenbauer polynomials. A large class of problems of mathematical physics, and especially several plane and antiplane elasticity problems, not possessing closed-form solutions, can be reduced to the solution of certain systems of such a type of singular integral equations. Also by using a certain method the new formula which is used for the numerical solution of the Cauchy-type integral equations can be extended for the general type of the finite-part singular integrals, too. © 1988 Springer-Verlag. en
heal.publisher Springer-Verlag en
heal.journalName Ingenieur-Archiv en
dc.identifier.doi 10.1007/BF00537198 en
dc.identifier.isi ISI:A1988M342700005 en
dc.identifier.volume 58 en
dc.identifier.issue 1 en
dc.identifier.spage 35 en
dc.identifier.epage 46 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής