dc.contributor.author |
Ladopoulos, EG |
en |
dc.date.accessioned |
2014-03-01T01:07:13Z |
|
dc.date.available |
2014-03-01T01:07:13Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0013-7944 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9860 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-38249030143&partnerID=40&md5=eb512f3d48aebfb6e011655d5568a7bb |
en |
dc.subject.classification |
Mechanics |
en |
dc.title |
On the numerical evaluation of the general type of finite-part singular integrals and integral equations used in fracture mechanics |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
A new method is established for the numerical solution of the general type of the finite-part integrals and integral equations of the first and second kind, which are frequently encountered in problems of applied mechanics and especially in plane and antiplane elasticity. Many numerical integration rules are properly combined in order to handle numerically finite-part integral equations along the integration interval [-1, 1] and for a large variety of weight functions. In order to solve this type of singular integral equations, we introduce some new formulae, which are the general type of the Plemelej formulae. In this way such an equation may be numerically solved by reduction to a system of linear equations. Finally, two applications to fracture mechanics are given. © 1988. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Engineering Fracture Mechanics |
en |
dc.identifier.isi |
ISI:A1988Q583800012 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
315 |
en |
dc.identifier.epage |
337 |
en |