dc.contributor.author |
Kanarachos, A |
en |
dc.contributor.author |
Provatidis, Ch |
en |
dc.date.accessioned |
2014-03-01T01:07:13Z |
|
dc.date.available |
2014-03-01T01:07:13Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9862 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0024107764&partnerID=40&md5=c3825ab3ff0778ac20e3e46d165ad403 |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Finite Element Program |
en |
dc.subject.other |
Symmetric Galerkin-Type BEM Formulation |
en |
dc.subject.other |
Mathematical Techniques |
en |
dc.title |
On the symmetrization of the BEM formulation |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
In this paper a symmetric Galerkin-type BEM formulation for both static and dynamic problems is presented. It is shown that the above formulation leads to a significant reduction of the memory storage and of the computational effort for the BEM analysis, and also to the solution of compatibility and corner problems of the classical BEM method. The symmetric formulation is also suitable for the use of BEM subregions via the construction of normalized (1-0)-type shape functions. The BEM subregions can be easily linked into a standard finite element programme, thus bridging FEM-BEM. © 1988. |
en |
heal.publisher |
ELSEVIER SCIENCE SA LAUSANNE |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.isi |
ISI:A1988R098500003 |
en |
dc.identifier.volume |
71 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
151 |
en |
dc.identifier.epage |
165 |
en |