dc.contributor.author |
Ladopoulos, EG |
en |
dc.contributor.author |
Zisis, VA |
en |
dc.contributor.author |
Kravvaritis, D |
en |
dc.date.accessioned |
2014-03-01T01:07:16Z |
|
dc.date.available |
2014-03-01T01:07:16Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0167-8442 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9892 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0024019106&partnerID=40&md5=3e35cf45f152a9f17b2bc40c0011d3bd |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Mathematical Techniques--Integral Equations |
en |
dc.subject.other |
Pressure Effects |
en |
dc.subject.other |
Crack Tip Stress Intensity Factor |
en |
dc.subject.other |
Hilbert Space |
en |
dc.subject.other |
Linear Algebraic Equations |
en |
dc.subject.other |
Solids |
en |
dc.title |
Singular integral equations in Hilbert space applied to crack problems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
Crack problems are solved by application of a system of singular integral equations in Hilbert space. The method consists of replacing the singular integral equation by a system of linear algebraic equations for the values of the unknown function at specially chosen points within the range of integration. Obtained is a solution for a nonsymmetric cross-shaped crack in an infinite and isotropic solid subjected to a constant pressure, the symmetric configuration being a special case. © 1988. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Theoretical and Applied Fracture Mechanics |
en |
dc.identifier.isi |
ISI:A1988P562900009 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
271 |
en |
dc.identifier.epage |
281 |
en |