dc.contributor.author |
Papageorgiou, G |
en |
dc.contributor.author |
Simos, Th |
en |
dc.contributor.author |
Tsitouras, Ch |
en |
dc.date.accessioned |
2014-03-01T01:07:16Z |
|
dc.date.available |
2014-03-01T01:07:16Z |
|
dc.date.issued |
1988 |
en |
dc.identifier.issn |
0923-2958 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/9896 |
|
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.title |
Some new Runge-Kutta methods with interpolation properties and their application to the Magnetic-Binary Problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF01230713 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF01230713 |
en |
heal.language |
English |
en |
heal.publicationDate |
1988 |
en |
heal.abstract |
Explicit Runge-Kutta methods provide a popular way to solve the initial value problem for a system of nonstiff ordinary differential equations. On the other hand, for these methods, there is no a natural way to approximate the solution at any point within a given integration step. Scaled Runge-Kutta methods have been developed recently which determine the solution of the differential system at non-mesh points of a given integration step. We propose some new such algorithms based upon well known explicit Runge-Kutta methods, and we verify their advantages by applying them to the Magnetic-Binary Problem. © 1988 Kluwer Academic Publishers. |
en |
heal.publisher |
Kluwer Academic Publishers |
en |
heal.journalName |
Celestial Mechanics |
en |
dc.identifier.doi |
10.1007/BF01230713 |
en |
dc.identifier.isi |
ISI:000207112500011 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
167 |
en |
dc.identifier.epage |
177 |
en |